0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что называется мгновенной скоростью движения. Мгновенная и средняя скорости

§ 8. Мгновенная и средняя скорости

Как вы думаете, какую скорость показывает спидометр?

Может ли городской транспорт двигаться равномерно и прямолинейно?

Понаблюдайте за движением раз- личных тел. Какие из них всё время изменяют скорость при движении, а какие движутся практически равномерно в течение длительного промежутка времени?

Реальные тела (человек, автомобиль, ракета, теплоход и т. д.), как правило, не движутся с постоянной скоростью. Они начинают двигаться из состояния покоя, и их скорость увеличивается постепенно, при остановке скорость уменьшается также постепенно, таким образом, реальные тела движутся неравномерно.

Неравномерное движение может быть как прямолинейным, так и криволинейным.

Чтобы полностью описать неравномерное движение точки, надо знать её положение и скорость в каждый момент времени.

Запомни
Скорость точки в данный момент времени называется мгновенной скоростью.

Что же понимают под мгновенной скоростью?

Пусть точка, двигаясь неравномерно и по кривой линии, в некоторый момент времени t занимает положение М (рис. 1.24). По прошествии времени Δt1 от этого момента точка займёт положение М1, совершив перемещение Δ1. Поделив вектор Δ1 на промежуток времени Δt1 найдём такую скорость равномерного прямолинейного движения, с которой должна была бы двигаться точка, чтобы за время Δt попасть из положения М в положение М1. Эту скорость называют средней скоростью перемещения точки за время Δt1.

Обозначив её через ср1, запишем: Средняя скорость направлена вдоль секущей ММ1. По той же формуле мы находим скорость точки при равномерном прямолинейном движении.

Запомни
Скорость, с которой должна равномерно и прямолинейно двигаться точка, чтобы попасть из начального положения в конечное за определённый промежуток времени, называется средней скоростью перемещения.

Для того чтобы определить скорость в данный момент времени, когда точка занимает положение М, найдём средние скорости за всё меньшие и меньшие промежутки времени:

Верно ли следующее определение мгновенной скорости: «Скорость тела в данной точке траектории называется мгновенной скоростью»?

При уменьшении промежутка времени Δt перемещения точки уменьшаются по модулю и меняются по направлению. Соответственно этому средние скорости также меняются как по модулю, так и по направлению. Но по мере приближения промежутка времени Δt к нулю средние скорости всё меньше и меньше будут отличаться друг от друга. А это означает, что при стремлении промежутка времени Δt к нулю отношение стремится к определённому вектору как к своему предельному значению. В механике такую величину называют скоростью точки в данный момент времени или просто мгновенной скоростью и обозначают

Запомни
Мгновенная скорость точки есть величина, равная пределу отношения перемещения Δ к промежутку времени Δt, в течение которого это перемещение произошло, при стремлении промежутка Δt к нулю.

Выясним теперь, как направлен вектор мгновенной скорости. В любой точке траектории вектор мгновенной скорости направлен так, как в пределе, при стремлении промежутка времени Δt к нулю, направлена средняя скорость перемещения. Эта средняя скорость в течение промежутка времени Δt направлена так, как направлен вектор перемещения Δ Из рисунка 1.24 видно, что при уменьшении промежутка времени Δt вектор Δ уменьшая свою длину, одновременно поворачивается. Чем короче становится вектор Δ, тем ближе он к касательной, проведённой к траектории в данной точке М, т. е. секущая переходит в касательную. Следовательно,

Важно
мгновенная скорость направлена по касательной к траектории (см. рис. 1.24).

В частности, скорость точки, движущейся по окружности, направлена по касательной к этой окружности. В этом нетрудно убедиться. Если маленькие частички отделяются от вращающегося диска, то они летят по касательной, так как имеют в момент отрыва скорость, равную скорости точек на окружности диска. Вот почему грязь из-под колёс буксующей автомашины летит по касательной к окружности колёс (рис. 1.25).

Читать еще:  Стрельба из арбалета где можно. Арбалет: техника стрельбы или учимся стрелять правильно

Понятие мгновенной скорости — одно из основных понятий кинематики. Это понятие относится к точке. Поэтому в дальнейшем, говоря о скорости движения тела, которое нельзя считать точкой, мы можем говорить о скорости какой-нибудь его точки.

Помимо средней скорости перемещения, для описания движения чаще пользуются средней путевой скоростью cps.

Запомни
Средняя путевая скорость определяется отношением пути к промежутку времени, за который этот путь пройден:

Начертите произвольную кривую. Пусть вдоль неё движется точка. Выберите на кривой несколько точек и начертите вектор мгновенной скорости, если: а) модуль скорости не изменяется; б) модуль скорости уменьшается на одно и то же значение через авные отрезки пути.

Когда мы говорим, что путь от Москвы до Санкт-Петербурга поезд прошёл со скоростью 80 км/ч, мы имеем в виду именно среднюю путевую скорость движения поезда между этими городами. Модуль средней скорости перемещения при этом будет меньше средней путевой скорости, так как s > |Δ|.

Важно
Для неравномерного движения также справедлив закон сложения скоростей. В этом случае складываются мгновенные скорости.

Ключевые слова для поиска информации по теме параграфа.
Мгновенная скорость. Средняя скорость. Средняя путевая скорость

Вопросы к параграфу

1. Что называется средней скоростью перемещения?

2. Что такое мгновенная скорость?

3. Как направлена мгновенная скорость в данной точке траектории?

4. Точка движется по криволинейной траектории так, что модуль её скорости не изменяется. Означает ли это, что скорость точки постоянна?

5. Что такое средняя путевая скорость?

Образцы заданий ЕГЭ

A1. На рисунке представлен график зависимости координаты тела от времени. Средняя скорость движения тела равна

1) 48 км/ч 3) 40 км/ч

A2. Уравнение движения тела х = 4 + 5t. Все величины выражены в СИ. Через время, равное 2 с после начала движения, скорость тела равна

1) 7 м/с 2) 2,5 м/с 3) 5 м/с 4) 14 м/с

A3. На рисунке показана зависимость координаты тела от времени. Определите максимальное значение модуля мгновенной скорости.

A4. Определите значения средней путевой скорости и модуля средней скорости перемещения за 9 с (см. рис. к тесту АЗ).

Что называется мгновенной скоростью движения. Мгновенная и средняя скорости

«Физика — 10 класс»

Какую скорость показывает спидометр?
Может ли городской транспорт двигаться равномерно и прямолинейно?

Реальные тела (человек, автомобиль, ракета, теплоход и т. д.), как правило, не движутся с постоянной скоростью. Они начинают двигаться из состояния покоя, и их скорость увеличивается постепенно, при остановке скорость уменьшается также постепенно, таким образом, реальные тела движутся неравномерно.

Неравномерное движение может быть как прямолинейным, так и криволинейным.

Чтобы полностью описать неравномерное движение точки, надо знать её положение и скорость в каждый момент времени.

Скорость точки в данный момент времени называется мгновенной скоростью.

Что же понимают под мгновенной скоростью?

Пусть точка, двигаясь неравномерно и по кривой линии, в некоторый момент времени t занимает положение М (рис. 1.24). По прошествии времени Δt1 от этого момента точка займёт положение М1, совершив перемещение Δ1. Поделив вектор Δ1 на промежуток времени Δt1 найдём такую скорость равномерного прямолинейного движения, с которой должна была бы двигаться точка, чтобы за время Δt попасть из положения М в положение М1. Эту скорость называют средней скоростью перемещения точки за время Δt1.

Обозначив её через ср1, запишем: Средняя скорость направлена вдоль секущей ММ1. По той же формуле мы находим скорость точки при равномерном прямолинейном движении.

Скорость, с которой должна равномерно и прямолинейно двигаться точка, чтобы попасть из начального положения в конечное за определённый промежуток времени, называется средней скоростью перемещения.

Читать еще:  Что пожелать перед соревнованиями. Пожелания для победителя соревнований или конкурса

Для того чтобы определить скорость в данный момент времени, когда точка занимает положение М, найдём средние скорости за всё меньшие и меньшие промежутки времени:

Интересно, верно ли следующее определение мгновенной скорости: «Скорость тела в данной точке траектории называется мгновенной скоростью»?

При уменьшении промежутка времени Δt перемещения точки уменьшаются по модулю и меняются по направлению. Соответственно этому средние скорости также меняются как по модулю, так и по направлению. Но по мере приближения промежутка времени Δt к нулю средние скорости всё меньше и меньше будут отличаться друг от друга. А это означает, что при стремлении промежутка времени Δt к нулю отношение стремится к определённому вектору как к своему предельному значению. В механике такую величину называют скоростью точки в данный момент времени или просто мгновенной скоростью и обозначают

Мгновенная скорость точки есть величина, равная пределу отношения перемещения Δ к промежутку времени Δt, в течение которого это перемещение произошло, при стремлении промежутка Δt к нулю.

Выясним теперь, как направлен вектор мгновенной скорости. В любой точке траектории вектор мгновенной скорости направлен так, как в пределе, при стремлении промежутка времени Δt к нулю, направлена средняя скорость перемещения. Эта средняя скорость в течение промежутка времени Δt направлена так, как направлен вектор перемещения Δ Из рисунка 1.24 видно, что при уменьшении промежутка времени Δt вектор Δ уменьшая свою длину, одновременно поворачивается. Чем короче становится вектор Δ, тем ближе он к касательной, проведённой к траектории в данной точке М, т. е. секущая переходит в касательную. Следовательно,

мгновенная скорость направлена по касательной к траектории (см. рис. 1.24).

В частности, скорость точки, движущейся по окружности, направлена по касательной к этой окружности. В этом нетрудно убедиться. Если маленькие частички отделяются от вращающегося диска, то они летят по касательной, так как имеют в момент отрыва скорость, равную скорости точек на окружности диска. Вот почему грязь из-под колёс буксующей автомашины летит по касательной к окружности колёс (рис. 1.25).

Понятие мгновенной скорости — одно из основных понятий кинематики. Это понятие относится к точке. Поэтому в дальнейшем, говоря о скорости движения тела, которое нельзя считать точкой, мы можем говорить о скорости какой-нибудь его точки.

Помимо средней скорости перемещения, для описания движения чаще пользуются средней путевой скоростью cps.

Средняя путевая скорость определяется отношением пути к промежутку времени, за который этот путь пройден:

Когда мы говорим, что путь от Москвы до Санкт-Петербурга поезд прошёл со скоростью 80 км/ч, мы имеем в виду именно среднюю путевую скорость движения поезда между этими городами. Модуль средней скорости перемещения при этом будет меньше средней путевой скорости, так как s > |Δ|.

Для неравномерного движения также справедлив закон сложения скоростей. В этом случае складываются мгновенные скорости.

Источник: «Физика — 10 класс», 2014, учебник Мякишев, Буховцев, Сотский

Кинематика — Физика, учебник для 10 класса — Класс!ная физика

Учебники

Журнал «Квант»

Общие

Слободянюк А.И. Физика 10/2.2

§2. Кинематическое описание механического движения материальной точки

2.2 Средняя и мгновенная скорость при движении точки по прямой

Как мы уже отмечали, равномерное движение является простейшей моделью механического движения. Если такая модель неприменима, то необходимо использовать более сложные модели. Для их построение нам необходимо рассмотреть понятие скорости в случае неравномерного движения.

Пусть за интервал времени от t до t1 координата точки изменилась от x до x1. Если мы вычислим скорость по прежнему правилу

то получим величину (она называется средней скоростью), которая описывает быстроту движения «в среднем» — вполне возможно, что за первую половину времени движения точка сместилась на большее расстояние, чем за вторую.

Читать еще:  Ужасы фитнес-клубов: есть ли смысл ходить в спортзал

Средней скоростью называется физическая величина равная отношению изменения координаты точки к интервалу времени, в течение которого это изменение произошло.

Геометрический смысл средней скорости — коэффициент наклона секущей AB графика закона движения.

Для более детального, более точного описания движения, можно задать два значения средней скорости – за первую половину времени движения υср1, за вторую половину — υср2 .Если и такая точность нас не устраивает — то необходимо дробить временные интервалы дальше — на четыре, восемь и т.д. частей. При этом необходимо задавать соответственно четыре, восемь и т.д. значений средних скоростей. Согласитесь, такое описание становится громоздким и неудобным. Выход из этой ситуации давно найден — он заключается в том, что бы рассматривать скорость как функцию времени.

Давайте посмотрим, как будет меняться средняя скорость при уменьшении промежутка времени, за который мы эту скорость вычисляем. На рис.6 показан график зависимости координаты материальной точки от времени. Будем вычислять среднюю скорость за интервал времени от t до t1, последовательно приближая значение t1 к t. При этом семейство секущих AA1, AA1’, AA1’’ (рис.6), будет стремиться к некоторому предельному положению прямой AB, которая является касательной к графику закона движения. Мы приводим два различных случая, чтобы показать, что мгновенная скорость может быть как больше, так и меньше средней скорости. Эту процедуру можно описать и алгебраически, последовательно вычисляя отношения (

upsilon»_ = frac) . При этом оказывается, что эти величины приближаются к некоторому вполне определенному значению. Это предельное значение получило название мгновенной скорости.

Мгновенной скоростью называется отношение изменения координаты точки к интервалу времени, за которое это изменение произошло, при интервале времени, стремящемся к нулю [1] :

Геометрический смысл мгновенной скорости — коэффициент наклона касательной к графику закона движения.

Таким образом, мы «привязали» значение мгновенной скорости к конкретному моменту времени — задали значение скорости в данный момент времени, в данной точке пространства. Тем самым у нас появилась возможность рассматривать скорость тела как функцию времени, или функцию координаты.

С математической точки зрения это гораздо удобней, чем задавать значения средних скоростей на многих малых временных промежутках. Однако давайте задумаемся, а имеет ли физический смысл скорость в данный момент времени? Скорость — характеристика движения, в данном случае перемещения тела в пространстве. Для того чтобы зафиксировать перемещение необходимо наблюдать за движением в течение некоторого промежутка времени. Чтобы измерить скорость, также необходим промежуток времени. Даже самые совершенные измерители скорости радарные установки измеряют скорость движущихся автомобилей пусть за малый (порядка одной миллионной доли секунды) промежуток времени, а не в какой-то момент времени. Следовательно, выражение «скорость в данный момент времени» с точки зрения физики некорректно. Тем не менее, в механике постоянно пользуются понятием мгновенной скорости, которое очень удобно в математических расчетах. Математически, логически мы можем рассмотреть предельный переход Δt → 0, а физически имеется минимально возможное значение промежутка Δt, за который можно измерить скорость.

В дальнейшем, говоря о скорости, мы будем иметь в виду именно мгновенную скорость. Заметим, при равномерном движении мгновенная скорость равна ранее определенной скорости, потому, что при равномерном движении отношение (

frac) не зависит от величины промежутка времени, поэтому остается неизменным и при сколь угодно малом Δt.

Так как скорость может зависеть от времени, то ее следует рассматривать как функцию времени, и изображать ее в виде графика.

Примечания

  1. ↑ В высшей математике это определение записывают с помощью специального символа lim (предел — limit)[

lim_frac] , кроме того, процедура вычисления подобного предела называется взятием производной.

Источники:

http://www.u9086.mass.hc.ru/%D0%A4%D0%B8%D0%B7%D0%B8%D0%BA%D0%B0_10_%D0%BA%D0%BB_%D0%9C%D1%8F%D0%BA%D0%B8%D1%88%D0%B5%D0%B2/8.html
http://class-fizika.ru/10_a9.html
http://www.physbook.ru/index.php/%D0%A1%D0%BB%D0%BE%D0%B1%D0%BE%D0%B4%D1%8F%D0%BD%D1%8E%D0%BA_%D0%90.%D0%98._%D0%A4%D0%B8%D0%B7%D0%B8%D0%BA%D0%B0_10/2.2

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector